Best Practices for Imbalanced Data and Partitioning

On Demand

In this two-part learning session, we discuss best practices around data partitioning and working with imbalanced datasets.

Five-fold cross-validation is often the silver bullet for partitioning your validation dataset, but there are some dangerous caveats you have to be aware of to make sure that you’re building robust models. In this learning session (part 1) , we talk about those pitfalls and outline strategies for handling them.

Binary target variables are very common in data science use cases, many of which are severely imbalanced. When you’re building models for infrequent events, such as predicting fraud or identifying product failures, it’s important to watch out for imbalance in your data. (In part 2 of this learning session we discuss strategies for working with imbalanced datasets and provide some rules-of-thumb for these types of use cases.)

Featured Presenters

Event Sponors

Login Or Register

cropped-CogHeadLogo.png

Register to View Event

cropped-CogHeadLogo.png

Get The Best Practices for Imbalanced Data and Partitioning

cropped-CogHeadLogo.png

AI Best Practices

Get the Step By Step Checklist for AI Projects

login

Login to register for events. Don’t have an account? Just register for an event and an account will be created for you!