Close this search box.

Glossary of Artificial Intelligence (AI), Machine Learning (ML), and Big Data Terms

Generative Adversarial Network (GAN)

A deep learning machine learning model where two neural networks are used for applications such as content generation. One model generates a representation of the output while the other model determines how suitable that output is to the desired result. Given a training set, this technique learns to generate new data with the same statistics as the training set. In essence, the network is creating a new training data set from an original data set. The “generator” creates new data based on its best guess, and the “discriminator” network determines whether the data is good enough. Based on the training data it has been given, GANs can generate new images that look at least superficially or at a glance real to humans. Originally used for unsupervised neural network training, applied since for semi-supervised, supervised, and reinforcement learning approaches.

Get Certified on the Proven Path to Success with AI, Big Data & Analytics Projects

Login Or Register


Register to View Event


Get The Generative Adversarial Network (GAN)


AI Best Practices

Get the Step By Step Checklist for AI Projects


Login to register for events. Don’t have an account? Just register for an event and an account will be created for you!