Close this search box.

Glossary of Artificial Intelligence (AI), Machine Learning (ML), and Big Data Terms

Cost Function

The aggregation of all the losses / errors in a neural network during one pass of training. Measures the aggregate “correctness” or error of the network. There are many ways to calculate the cost function, but a simple one is the average of the square of all the errors for the different outputs. This is called the mean squared error (MSE). As we train our models we iterate them with each training cycle to lower and lower the total error of the network (total cost). Reducing how long it takes to get to the goal of lowest error is the goal of achieving convergence. See Loss Function.

Get Certified on the Proven Path to Success with AI, Big Data & Analytics Projects

Login Or Register


Register to View Event


Get The Cost Function


AI Best Practices

Get the Step By Step Checklist for AI Projects


Login to register for events. Don’t have an account? Just register for an event and an account will be created for you!